Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 14.025
Filtrar
1.
World J Gastroenterol ; 30(12): 1670-1675, 2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38617746

RESUMO

This editorial highlights the remarkable advancements in medical treatment strategies for pancreatic neuroendocrine tumors (pan-NETs), emphasizing tailored approaches for specific subtypes. Cytoreductive surgery and somatostatin analogs (SSAs) play pivotal roles in managing tumors, while palliative options such as molecular targeted therapy, peptide receptor radionuclide therapy, and chemotherapy are reserved for SSA-refractory patients. Gastrinomas, insulinomas, glucagonomas, carcinoid tumors and VIPomas necessitate distinct thera-peutic strategies. Understanding the genetic basis of pan-NETs and exploring immunotherapies could lead to promising avenues for future research. This review underscores the evolving landscape of pan-NET treatment, offering renewed hope and improved outcomes for patients facing this complex disease.


Assuntos
Tumor Carcinoide , Tumores Neuroendócrinos , Neoplasias Pancreáticas , Humanos , Tumores Neuroendócrinos/genética , Tumores Neuroendócrinos/terapia , Imunoterapia , Procedimentos Cirúrgicos de Citorredução , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética
2.
Front Immunol ; 15: 1378190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38629072

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is typically diagnosed at advanced stages and associated with early distant metastasis and poor survival. Besides clinical factors, the tumor microenvironment (TME) emerged as a crucial determinant of patient survival and therapy response in many tumors, including PDAC. Thus, the presence of tumor-infiltrating lymphocytes and the formation of tertiary lymphoid structures (TLS) is associated with longer survival in PDAC. Although neoadjuvant therapy (NeoTx) has improved the management of locally advanced tumors, detailed insight into its effect on various TME components is limited. While a remodeling towards a proinflammatory state was reported for PDAC-infiltrating T cells, the effect of NeoTx on B cell subsets, including plasma cells, and TLS formation is widely unclear. We thus investigated the frequency, composition, and spatial distribution of PDAC-infiltrating B cells in primary resected (PR) versus neoadjuvant-treated patients using a novel multiplex immunohistochemistry panel. The NeoTx group displayed significantly lower frequencies of pan B cells, GC B cells, plasmablasts, and plasma cells, accompanied by a reduced abundance of TLS. This finding was supported by bulk RNA-sequencing analysis of an independent fresh frozen tissue cohort, which revealed that major B cell pathways were downregulated in the NeoTx group. We further observed that plasma cells frequently formed aggregates that localized close to TLS and that TLS+ patients displayed significantly higher plasma cell frequencies compared to TLS- patients in the PR group. Additionally, high densities of CD20+ intratumoral B cells were significantly associated with longer overall survival in the PR group. While CD20+ B cells held no prognostic value for NeoTx patients, an increased frequency of proliferating CD20+Ki67+ B cells emerged as an independent prognostic factor for longer survival in the NeoTx group. These results indicate that NeoTx differentially affects PDAC-infiltrating immune cells and may have detrimental effects on the existing B cell landscape and the formation of TLS. Gaining further insight into the underlying molecular mechanisms is crucial to overcome the intrinsic immunotherapy resistance of PDAC and develop novel strategies to improve the long-term outcome of PDAC patients.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Terapia Neoadjuvante/métodos , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Linfócitos B , Linfócitos T/patologia , Microambiente Tumoral
3.
Int J Mol Sci ; 25(7)2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38612768

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is a lethal malignant disease with a low 5-year overall survival rate. It is the third-leading cause of cancer-related deaths in the United States. The lack of robust therapeutics, absence of effective biomarkers for early detection, and aggressive nature of the tumor contribute to the high mortality rate of PDAC. Notably, the outcomes of recent immunotherapy and targeted therapy against PDAC remain unsatisfactory, indicating the need for novel therapeutic strategies. One of the newly described molecular features of PDAC is the altered expression of protein arginine methyltransferases (PRMTs). PRMTs are a group of enzymes known to methylate arginine residues in both histone and non-histone proteins, thereby mediating cellular homeostasis in biological systems. Some of the PRMT enzymes are known to be overexpressed in PDAC that promotes tumor progression and chemo-resistance via regulating gene transcription, cellular metabolic processes, RNA metabolism, and epithelial mesenchymal transition (EMT). Small-molecule inhibitors of PRMTs are currently under clinical trials and can potentially become a new generation of anti-cancer drugs. This review aims to provide an overview of the current understanding of PRMTs in PDAC, focusing on their pathological roles and their potential as new therapeutic targets.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteína-Arginina N-Metiltransferases/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Imunoterapia , Arginina
4.
Int J Mol Sci ; 25(7)2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38612866

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is highly malignant, with a 5-year survival rate of less than 10%. Furthermore, the acquisition of anticancer drug resistance makes PDAC treatment difficult. We established MIA-GEM cells, a PDAC cell line resistant to gemcitabine (GEM), a first-line anticancer drug, using the human PDAC cell line-MIA-PaCa-2. Microtubule-associated serine/threonine kinase-4 (MAST4) expression was increased in MIA-GEM cells compared with the parent cell line. Through inhibitor screening, dysregulated AKT signaling was identified in MIA-GEM cells with overexpression of AKT3. MAST4 knockdown effectively suppressed AKT3 overexpression, and both MAST4 and AKT3 translocation into the nucleus, phosphorylating forkhead box O3a (FOXO3) in MIA-GEM cells. Modulating FOXO3 target gene expression in these cells inhibited apoptosis while promoting stemness and proliferation. Notably, nuclear MAST4 demonstrated higher expression in GEM-resistant PDAC cases compared with that in the GEM-sensitive cases. Elevated MAST4 expression correlated with a poorer prognosis in PDAC. Consequently, nuclear MAST4 emerges as a potential marker for GEM resistance and poor prognosis, representing a novel therapeutic target for PDAC.


Assuntos
Antineoplásicos , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Resistencia a Medicamentos Antineoplásicos/genética , Microtúbulos , Gencitabina , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteína Forkhead Box O3/genética , Proteínas Proto-Oncogênicas c-akt , Proteínas Associadas aos Microtúbulos , Proteínas Serina-Treonina Quinases
5.
Cells ; 13(7)2024 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-38607041

RESUMO

Pancreatic cancer is a highly lethal disease with a 5-year survival rate of around 11-12%. Surgery, being the treatment of choice, is only possible in 20% of symptomatic patients. The main reason is that when it becomes symptomatic, IT IS the tumor is usually locally advanced and/or has metastasized to distant organs; thus, early diagnosis is infrequent. The lack of specific early symptoms is an important cause of late diagnosis. Unfortunately, diagnostic tumor markers become positive at a late stage, and there is a lack of early-stage markers. Surgical and non-surgical cases are treated with neoadjuvant and/or adjuvant chemotherapy, and the results are usually poor. However, personalized targeted therapy directed against tumor drivers may improve this situation. Until recently, many pancreatic tumor driver genes/proteins were considered untargetable. Chemical and physical characteristics of mutated KRAS are a formidable challenge to overcome. This situation is slowly changing. For the first time, there are candidate drugs that can target the main driver gene of pancreatic cancer: KRAS. Indeed, KRAS inhibition has been clinically achieved in lung cancer and, at the pre-clinical level, in pancreatic cancer as well. This will probably change the very poor outlook for this disease. This paper reviews the genetic characteristics of sporadic and hereditary predisposition to pancreatic cancer and the possibilities of a personalized treatment according to the genetic signature.


Assuntos
Neoplasias Pulmonares , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/diagnóstico , Neoplasias Pulmonares/genética , Terapia Neoadjuvante , Biomarcadores Tumorais/genética
6.
PLoS One ; 19(4): e0298808, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38598488

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) presents at advanced stages and is refractory to most treatment modalities. Wnt signaling activation plays a critical role in proliferation and chemotherapeutic resistance. Minimal media conditions, growth factor dependency, and Wnt dependency were determined via Wnt inhibition for seven patient derived organoids (PDOs) derived from pancreatic tumor organoid libraries (PTOL). Organoids demonstrating response in vitro were assessed in vivo using patient-derived xenografts. Wnt (in)dependent gene signatures were identified for each organoid. Panc269 demonstrated a trend of reduced organoid growth when treated with ETC-159 in combination with paclitaxel or gemcitabine as compared with chemotherapy or ETC-159 alone. Panc320 demonstrated a more pronounced anti-proliferative effect in the combination of ETC-159 and paclitaxel but not with gemcitabine. Panc269 and Panc320 were implanted into nude mice and treated with ETC-159, paclitaxel, and gemcitabine as single agents and in combination. The combination of ETC-159 and paclitaxel demonstrated an anti-tumor effect greater than ETC-159 alone. Extent of combinatory treatment effect were observed to a lesser extent in the Panc320 xenograft. Wnt (in)dependent gene signatures of Panc269 and 320 were consistent with the phenotypes displayed. Gene expression of several key Wnt genes assessed via RT-PCR demonstrated notable fold change following treatment in vivo. Each pancreatic organoid demonstrated varied niche factor dependencies, providing an avenue for targeted therapy, supported through growth analysis following combinatory treatment of Wnt inhibitor and standard chemotherapy in vitro. The clinical utilization of this combinatory treatment modality in pancreatic cancer PDOs has thus far been supported in our patient-derived xenograft models treated with Wnt inhibitor plus paclitaxel or gemcitabine. Gene expression analysis suggests there are key Wnt genes that contribute to the Wnt (in)dependent phenotypes of pancreatic tumors, providing plausible mechanistic explanation for Wnt (in)dependency and susceptibility or resistance to treatment on the genotypic level.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Animais , Camundongos , Humanos , Gencitabina , Via de Sinalização Wnt , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Camundongos Nus , Proliferação de Células , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Paclitaxel/farmacologia , Paclitaxel/uso terapêutico , Organoides/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Int J Pharm ; 655: 124072, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38561133

RESUMO

We explored the potential of overcoming the dense interstitial barrier in pancreatic cancer treatment by enhancing the uptake of hydrophilic chemotherapeutic drugs. In this study, we synthesized the squalenoyl-chidamide prodrug (SQ-CHI), linking lipophilic squalene (SQ) with the hydrophilic antitumor drug chidamide (CHI) through a trypsin-responsive bond. Self-assembled nanoparticles with sigma receptor-bound aminoethyl anisamide (AEAA) modification, forming AEAA-PEG-SQ-CHI NPs (A-C NPs, size 116.6 ± 0.4 nm), and reference nanoparticles without AEAA modification, forming mPEG-SQ-CHI NPs (M-C NPs, size 88.3 ± 0.3 nm), were prepared. A-C NPs exhibited significantly higher in vitro CHI release (74.7 %) in 0.5 % trypsin medium compared to release (20.2 %) in medium without trypsin. In vitro cell uptake assays revealed 3.6 and 2.3times higher permeation of A-C NPs into tumorspheres of PSN-1/HPSC or CFPAC-1/HPSC, respectively, compared to M-C NPs. Following intraperitoneal administration to subcutaneous tumor-bearing nude mice, the A-C NPs group demonstrated significant anti-pancreatic cancer efficacy, inducing cancer cell apoptosis and inhibiting proliferation in vivo. Mechanistic studies revealed that AEAA surface modification on nanoparticles promoted intracellular uptake through caveolin-mediated endocytosis. This nanoparticle system presents a novel therapeutic approach for pancreatic cancer treatment, offering a delivery strategy to enhance efficacy through improved tumor permeation, trypsin-responsive drug release, and specific cell surface receptor-mediated intracellular uptake.


Assuntos
Aminopiridinas , Benzamidas , Nanopartículas , Neoplasias Pancreáticas , Pró-Fármacos , Animais , Camundongos , Caveolinas/uso terapêutico , Camundongos Nus , Tripsina , Nanopartículas/química , Pró-Fármacos/química , Neoplasias Pancreáticas/tratamento farmacológico , Linhagem Celular Tumoral
8.
Sci Rep ; 14(1): 8998, 2024 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637546

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is considered the third leading cause of cancer mortality in the western world, offering advanced stage patients with few viable treatment options. Consequently, there remains an urgent unmet need to develop novel therapeutic strategies that can effectively inhibit pro-oncogenic molecular targets underpinning PDACs pathogenesis and progression. One such target is c-RAF, a downstream effector of RAS that is considered essential for the oncogenic growth and survival of mutant RAS-driven cancers (including KRASMT PDAC). Herein, we demonstrate how a novel cell-penetrating peptide disruptor (DRx-170) of the c-RAF-PDE8A protein-protein interaction (PPI) represents a differentiated approach to exploiting the c-RAF-cAMP/PKA signaling axes and treating KRAS-c-RAF dependent PDAC. Through disrupting the c-RAF-PDE8A protein complex, DRx-170 promotes the inactivation of c-RAF through an allosteric mechanism, dependent upon inactivating PKA phosphorylation. DRx-170 inhibits cell proliferation, adhesion and migration of a KRASMT PDAC cell line (PANC1), independent of ERK1/2 activity. Moreover, combining DRx-170 with afatinib significantly enhances PANC1 growth inhibition in both 2D and 3D cellular models. DRx-170 sensitivity appears to correlate with c-RAF dependency. This proof-of-concept study supports the development of DRx-170 as a novel and differentiated strategy for targeting c-RAF activity in KRAS-c-RAF dependent PDAC.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Transdução de Sinais , Proliferação de Células , Linhagem Celular Tumoral , 3',5'-AMP Cíclico Fosfodiesterases/metabolismo
9.
Sci Rep ; 14(1): 8389, 2024 04 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600093

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is not sensitive to most chemotherapy drugs, leading to poor chemotherapy efficacy. Recently, Trametinib and Palbociclib have promising prospects in the treatment of pancreatic cancer. This article aims to explore the effects of Trametinib on pancreatic cancer and address the underlying mechanism of resistance as well as its reversal strategies. The GDSC (Genomics of Drug Sensitivity in Cancer) and CTD2 (Cancer Target Discovery and Development) were utilized to screen the potential drug candidate in PDAC cell lines. The dose-increase method combined with the high-dose shock method was applied to induce the Trametinib-resistant PANC-1 and MIA PaCa-2 cell lines. The CCK8 proliferation assay, colony formation assay, flow cytometry, and western blot were conducted to verify the inhibitory effect of Trametinib and Palbociclib. RNA-seq was performed in resistant PDAC cell lines to find the differential expression genes related to drug resistance and predict pathways leading to the reversal of Trametinib resistance. The GDSC and CTD2 database screening revealed that Trametinib demonstrates a significant inhibitory effect on PDAC. We found that Trametinib has a lower IC50 than Gemcitabine in PDAC cell lines. Both Trametinib and Gemcitabine can decrease the proliferation capacity of pancreatic cells, induce cell cycle arrest, and increase apoptosis. Simultaneously, the phosphorylation of the AKT and ERK pathways were inhibited by the treatment of Trametinib. In addition, the RNA-seq of Trametinib-induced resistance PDAC cell lines reveals that the cyclin-dependent kinase (CDK)-RB-E2F regulatory axis and G2/M DNA damage checkpoint might lead the drug resistance. Besides, the combination of Trametinib with Palbociclib could inhibit the proliferation and cell cycle of both resistant cells lines and also restore the sensitivity of drug-resistant cells to Trametinib. Last but not least, the interferon-α and interferon-γ expression were upregulated in resistance cell lines, which might lead to the reversal of drug resistance. The study shows Trametinib has a critical inhibitory effect on PDAC. Besides, the combination of Trametinib with Palbociclib can inhibit the proliferation of PDAC-resistant cells.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Proliferação de Células , Linhagem Celular Tumoral , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Ciclo Celular , Quinases de Proteína Quinase Ativadas por Mitógeno , Quinase 4 Dependente de Ciclina
10.
PLoS One ; 19(4): e0302130, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38625917

RESUMO

PARP inhibitors have been developed as anti-cancer agents based on synthetic lethality in homologous recombination deficient cancer cells. However, resistance to PARP inhibitors such as olaparib remains a problem in clinical use, and the mechanisms of resistance are not fully understood. To investigate mechanisms of PARP inhibitor resistance, we established a BRCA1 knockout clone derived from the pancreatic cancer MIA PaCa-2 cells, which we termed C1 cells, and subsequently isolated an olaparib-resistant C1/OLA cells. We then performed RNA-sequencing and pathway analysis on olaparib-treated C1 and C1/OLA cells. Our results revealed activation of cell signaling pathway related to NAD+ metabolism in the olaparib-resistant C1/OLA cells, with increased expression of genes encoding the NAD+ biosynthetic enzymes NAMPT and NMNAT2. Moreover, intracellular NAD+ levels were significantly higher in C1/OLA cells than in the non-olaparib-resistant C1 cells. Upregulation of intracellular NAD+ levels by the addition of nicotinamide also induced resistance to olaparib and talazoparib in C1 cells. Taken together, our findings suggest that upregulation of intracellular NAD+ is one of the factors underlying the acquisition of PARP inhibitor resistance.


Assuntos
Antineoplásicos , Neoplasias Pancreáticas , Piperazinas , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , NAD , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Ftalazinas/farmacologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Proteína BRCA1
11.
PLoS One ; 19(4): e0301271, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38573891

RESUMO

OBJECTIVE: To assess the cost-effectiveness and budget impact of olaparib as a maintenance therapy in platinum-responsive, metastatic pancreatic cancer patients harboring a germline BRCA1/2 mutation, using the Swiss context as a model. METHODS: Based on data from the POLO trial, published literature and local cost data, we developed a partitioned survival model of olaparib maintenance including full costs for BRCA1/2 germline testing compared to FOLFIRI maintenance chemotherapy and watch-and-wait. We calculated the incremental cost-effectiveness ratio (ICER) for the base case and several scenario analyses and estimated 5-year budget impact. RESULTS: Comparing olaparib with watch-and wait and maintenance chemotherapy resulted in incremental cost-effectiveness ratios of CHF 2,711,716 and CHF 2,217,083 per QALY gained, respectively. The 5-year costs for the olaparib strategy in Switzerland would be CHF 22.4 million, of which CHF 11.4 million would be accounted for by germline BRCA1/2 screening of the potentially eligible population. This would amount to a budget impact of CHF 15.4 million (USD 16.9 million) versus watch-and-wait. CONCLUSIONS: Olaparib is not a cost-effective maintenance treatment option. Companion diagnostics are an equally important cost driver as the drug itself.


Assuntos
Neoplasias Ovarianas , Neoplasias Pancreáticas , Piperazinas , Feminino , Humanos , Proteína BRCA1/genética , Neoplasias Ovarianas/genética , Platina/uso terapêutico , Proteína BRCA2/genética , Ftalazinas/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Células Germinativas/patologia , Análise Custo-Benefício
12.
World J Gastroenterol ; 30(9): 1237-1249, 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38577174

RESUMO

BACKGROUND: Pancreatic ductal adenocarcinoma (PDAC) is a highly fatal disease with limited effective treatment especially after first-line chemotherapy. The human epidermal growth factor receptor 2 (HER-2) immunohistochemistry (IHC) positive is associated with more aggressive clinical behavior and shorter overall survival in PDAC. CASE SUMMARY: We present a case of multiple metastatic PDAC with IHC mismatch repair proficient but HER-2 IHC weakly positive at diagnosis that didn't have tumor regression after first-line nab-paclitaxel plus gemcitabine and PD-1 inhibitor treatment. A novel combination therapy PRaG 3.0 of RC48 (HER2-antibody-drug conjugate), radiotherapy, PD-1 inhibitor, granulocyte-macrophage colony-stimulating factor and interleukin-2 was then applied as second-line therapy and the patient had confirmed good partial response with progress-free-survival of 6.5 months and overall survival of 14.2 month. She had not developed any grade 2 or above treatment-related adverse events at any point. Percentage of peripheral CD8+Temra and CD4+Temra were increased during first two activation cycles of PRaG 3.0 treatment containing radiotherapy but deceased to the baseline during the maintenance cycles containing no radiotherapy. CONCLUSION: PRaG 3.0 might be a novel strategy for HER2-positive metastatic PDAC patients who failed from previous first-line approach and even PD-1 immunotherapy but needs more data in prospective trials.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Receptor ErbB-2 , Humanos , Feminino , Gencitabina , Desoxicitidina/uso terapêutico , Estudos Prospectivos , Inibidores de Checkpoint Imunológico/uso terapêutico , Paclitaxel/uso terapêutico , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Albuminas/uso terapêutico
13.
Int J Nanomedicine ; 19: 2823-2849, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38525013

RESUMO

Currently, pancreatic cancer (PC) is one of the most lethal malignant tumors. PC is typically diagnosed at a late stage, exhibits a poor response to conventional treatment, and has a bleak prognosis. Unfortunately, PC's survival rate has not significantly improved since the 1960s. Cancer-associated fibroblasts (CAFs) are a key component of the pancreatic tumor microenvironment (TME). They play a vital role in maintaining the extracellular matrix and facilitating the intricate communication between cancer cells and infiltrated immune cells. Exploring therapeutic approaches targeting CAFs may reverse the current landscape of PC therapy. In recent years, nano-drug delivery systems have evolved rapidly and have been able to accurately target and precisely release drugs with little or no toxicity to the whole body. In this review, we will comprehensively discuss the origin, heterogeneity, potential targets, and recent advances in the nano-drug delivery system of CAFs in PC. We will also propose a novel integrated treatment regimen that utilizes a nano-drug delivery system to target CAFs in PC, combined with radiotherapy and immunotherapy. Additionally, we will address the challenges that this regimen currently faces.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Pancreáticas , Humanos , Sistemas de Liberação de Fármacos por Nanopartículas , Neoplasias Pancreáticas/tratamento farmacológico , Imunoterapia , Pâncreas , Microambiente Tumoral
14.
Oxid Med Cell Longev ; 2024: 7683793, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38500550

RESUMO

The extracellular signal-regulated kinase (ERK) MAPK pathway is dysregulated in various human cancers and is considered an attractive therapeutic target for cancer. Therefore, several inhibitors of this pathway are being developed, and some are already used in the clinic. We have previously identified an anticancer compound, ACA-28, with a unique property to preferentially induce ERK-dependent apoptosis in melanoma cells. To comprehensively understand the biological cellular impact induced by ACA-28, we performed a global gene expression analysis of human melanoma SK-MEL-28 cells exposed to ACA-28 using a DNA microarray. The transcriptome analysis identified nuclear factor erythroid 2-related factor 2 (Nrf2), a master transcription factor that combats oxidative stress, as the most upregulated genetic pathway after ACA-28 treatment. Consistently, ACA-28 showed properties to increase the levels of reactive oxygen species (ROS) as well as Nrf2 protein, which is normally repressed by proteasomal degradation and activated in response to oxidative stresses. Furthermore, the ROS scavenger N-acetyl cysteine significantly attenuated the anticancer activity of ACA-28. Thus, ACA-28 activates Nrf2 signaling and exerts anticancer activity partly via its ROS-stimulating property. Interestingly, human A549 cancer cells with constitutively high levels of Nrf2 protein showed resistance to ACA-28, as compared with SK-MEL-28. Transient overexpression of Nrf2 also increased the resistance of cells to ACA-28, while knockdown of Nrf2 exerted the opposite effect. Thus, upregulation of Nrf2 signaling protects cancer cells from ACA-28-mediated cell death. Notably, the Nrf2 inhibitor ML385 substantially enhanced the cell death-inducing property of ACA-28 in pancreatic cancer cells, T3M4 and PANC-1. Our data suggest that Nrf2 plays a key role in determining cancer cell susceptibility to ACA-28 and provides a novel strategy for cancer therapy to combine the Nrf2 inhibitor and ACA-28.


Assuntos
Melanoma , Neoplasias Pancreáticas , Humanos , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Melanoma/tratamento farmacológico , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Neoplasias Pancreáticas/tratamento farmacológico
15.
Nutrients ; 16(5)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38474833

RESUMO

We previously established pancreatic cancer (PaCa) cell lines resistant to gemcitabine and found that the activity of nuclear factor κB (NF-κB) was enhanced upon the acquisition of gemcitabine resistance. Parthenolide, the main active ingredient in feverfew, has been reported to exhibit antitumor activity by suppressing the NF-κB signaling pathway in several types of cancers. However, the antitumor effect of parthenolide on gemcitabine-resistant PaCa has not been elucidated. Here, we confirmed that parthenolide significantly inhibits the proliferation of both gemcitabine-resistant and normal PaCa cells at concentrations of 10 µM and higher, and that the NF-κB activity is significantly inhibited, even by 1 µM parthenolide. In Matrigel invasion assays and angiogenesis assays, the invasive and angiogenic potentials were higher in gemcitabine-resistant than normal PaCa cells and were inhibited by a low concentration of parthenolide. Furthermore, Western blotting showed suppressed MRP1 expression in gemcitabine-resistant PaCa treated with a low parthenolide concentration. In a colony formation assay, the addition of 1 µM parthenolide improved the sensitivity of gemcitabine-resistant PaCa cell lines to gemcitabine. These results suggest that parthenolide may be used as a novel therapeutic agent for the treatment of gemcitabine-resistant PaCa.


Assuntos
Gencitabina , Neoplasias Pancreáticas , Sesquiterpenos , Humanos , NF-kappa B/metabolismo , Desoxicitidina/farmacologia , 60489 , Linhagem Celular Tumoral , Proliferação de Células , Apoptose , Neoplasias Pancreáticas/tratamento farmacológico
16.
BMC Complement Med Ther ; 24(1): 133, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38539165

RESUMO

BACKGROUND: Ethyl acetate extracts from Tetrastigma hemsleyanum (Sanyeqing) (EFT), a member of the Vitaceae plant family, have been shown to exhibit efficacy against a variety of cancers. In this light, our current study seeks to examine the mechanism of efficacy between EFT extracts and human pancreatic cancer PANC-1 cells. METHODS: The chemical components of EFT were analyzed by gas chromatography-mass spectrometry. The cytotoxicity of EFT on PANC-1 cells was measured using an MTT assay. In order to investigate EFT induction of cell cycle arrest, changes in cell-cycle distribution were monitored by flow cytometry. Wound healing and transwell assays were employed to investigate whether migration and invasion of PANC-1 cells were inhibited by EFT. Relative protein expression was detected using Western blot. RESULTS: GC-MS analysis of the chemical composition of EFT revealed that the majority of constituents were organic acids and their corresponding esters. EFT exhibits measurable cytotoxicity and inhibition of PANC-1 invasion. Growth inhibition was primarily attributed to downregulation of CDK2 which induces cell cycle arrest in the S-phase. Inhibition of metastasis is achieved through downregulation of mesenchymal-associated genes/activators, including ZEB1, N-cadherin, Vimentin, and Fibronectin. Meanwhile, the expression of E-cadherin was significantly increased by EFT treatment. Furthermore, downregulation of MMP-2 and MMP-9 were observed. CONCLUSION: Treatment of PANC-1 with EFT demonstrated measurable cytotoxic effects. Furthermore, EFT evoked S phase arrest while inhibiting the migration and invasion of PANC-1 cells. Additionally, EFT inhibited the epithelial to mesenchymal transition and MMPs expression in PANC-1 cells. This study serves to confirm the strong therapeutic potential of EFT while identifying the mechanisms of action.


Assuntos
Neoplasias Pancreáticas , Vitaceae , Humanos , Linhagem Celular Tumoral , Fase S , Transição Epitelial-Mesenquimal , Neoplasias Pancreáticas/tratamento farmacológico , Vitaceae/química
17.
Acta Biochim Biophys Sin (Shanghai) ; 56(4): 576-585, 2024 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-38433576

RESUMO

Poly ADP-ribose polymerase (PARP) inhibitor monotherapies are selectively effective in patients with pancreatic, breast, prostate, and ovarian cancers with BRCA1 mutations. Cancer patients with more frequent wild-type BRCA show poor responses to PARP inhibitors. Moreover, patients who are initially sensitive to these inhibitors eventually respond poorly to drugs. In the present study, we discover that abrogation of Kruppel-like factor 5 (KLF5) significantly inhibits homologous recombination, which is the main mechanism for DNA double-stranded repair. Furthermore, the downregulation of KLF5 expression promotes the DNA damage induced by olaparib and significantly reduces the IC 50 of the RARP inhibitor in pancreatic cancer cells. Overexpression of BRCA1 reverses the above effects caused by silencing of KLF5. Olaparib combined with a KLF5 inhibitor has an enhanced cytotoxic effect. Mechanistically, we identify BRCA1 as a KLF5 target gene. BRCA1 is positively correlated with KLF5 in PDAC tissue. Our results indicate that inhibition of KLF5 may induce BRCAness in a larger pancreatic cancer subset with proficient BRCA. The combination of KLF5 inhibitors and PARP inhibitors provides a novel treatment strategy to enhance the sensitivity of BRCA1-proficient pancreatic cancer to PARP inhibitors.


Assuntos
Antineoplásicos , Neoplasias Ovarianas , Neoplasias Pancreáticas , Masculino , Feminino , Humanos , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Linhagem Celular Tumoral , Proteína BRCA1/genética , Reparo do DNA , Antineoplásicos/uso terapêutico , Neoplasias Ovarianas/genética , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Fatores de Transcrição Kruppel-Like/genética
18.
J Colloid Interface Sci ; 665: 477-490, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38429120

RESUMO

Clinical pancreatic ductal adenocarcinoma (PDAC) treatment is severely limited by lack of effective KRAS suppression strategies. To address this dilemma, a reactive oxygen species (ROS)-responsive and PDAC-targeted nanodrug named Z/B-PLS was constructed to confront KRAS through dual-blockade of its downstream PI3K/AKT/mTOR and RAF/MEK/ERK for enhanced PDAC treatment. Specifically, photosensitizer zinc phthalocyanine (ZnPc) and PI3K/mTOR inhibitor BEZ235 (BEZ) were co-loaded into PLS which was constructed by click chemistry conjugating MEK inhibitor selumetinib (SEL) to low molecular weight heparin with ROS-responsive oxalate bond. The BEZ and SEL blocked PI3K/AKT/mTOR and RAF/MEK/ERK respectively to remodel glycolysis and non-canonical glutamine metabolism. ZnPc mediated photodynamic therapy (PDT) could enhance drug release through ROS generation, further facilitating KRAS downstream dual-blockade to create treatment-promoting drug delivery-therapeutic positive feedback. Benefiting from this broad metabolic modulation cascade, the metabolic symbiosis between normoxic and hypoxic tumor cells was also cut off simultaneously and effective tumor vascular normalization effects could be achieved. As a result, PDT was dramatically promoted through glycolysis-non-canonical glutamine dual-metabolism regulation, achieving complete elimination of tumors in vivo. Above all, this study achieved effective multidimensional metabolic modulation based on integrated smart nanodrug delivery, helping overcome the therapeutic challenges posed by KRAS mutations of PDAC.


Assuntos
Carcinoma Ductal Pancreático , Nanopartículas , Neoplasias Pancreáticas , Humanos , Glutamina/farmacologia , Glutamina/metabolismo , Glutamina/uso terapêutico , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-akt/uso terapêutico , Fosfatidilinositol 3-Quinases/metabolismo , Fosfatidilinositol 3-Quinases/uso terapêutico , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/uso terapêutico , Espécies Reativas de Oxigênio/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Carcinoma Ductal Pancreático/tratamento farmacológico , Serina-Treonina Quinases TOR/metabolismo , Serina-Treonina Quinases TOR/uso terapêutico , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Quinases de Proteína Quinase Ativadas por Mitógeno/uso terapêutico , Glicólise , Fototerapia , Linhagem Celular Tumoral
19.
Mol Med Rep ; 29(5)2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38488034

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is the most prevalent and aggressive form of pancreatic cancer. Gemcitabine (GEM), the first­line treatment for PDAC, which alleviates symptoms and enhances the quality of life of patients. However, it is prone to lead to the development of drug resistance during treatment. Interferon (IFN)­Î³ exhibits antitumor and immunomodulatory properties. The present study aimed to explore the impact of IFN­Î³ on the viability, migration and apoptosis of GEM­resistant pancreatic cancer cells. Firstly, a GEM­resistant pancreatic cancer cell line, named PANC­1/GEM, was constructed. Hematoxylin and eosin staining analyzed the cell morphology, whereas reverse transcription­quantitative PCR (RT­qPCR) assessed the expression levels of the drug­resistance genes multidrug resistance­associated protein (MRP) and breast cancer resistance protein (BCRP). The MTT assay and cell counting techniques were used to determine the appropriate concentration of IFN­y and its effects on cell viability. The IFN­Î³­induced apoptosis of PANC­1/GEM cells was assessed using an Apoptosis Detection Kit, whereas the impact of IFN­Î³ on the migration of these cells was evaluated using a wound­healing assay. The MTT assay revealed a resistance index of 22.4 in the PANC­1/GEM cell line. RT­qPCR indicated that, compared with in wild­type cells, the PANC­1/GEM resistant strain exhibited lower MRP and higher BCRP mRNA expression levels. The optimal concentration of IFN­Î³ for affecting PANC­1/GEM cells was determined to be 0.3 µg/ml. At this concentration, IFN­Î³ induced PANC­1/GEM cell apoptosis, along with a notable reduction in migration. Following treatment of PANC­1/GEM cells with IFN­Î³, MRP expression increased whereas BCRP mRNA expression decreased, indicating a reversal in their drug­resistance gene expression. In conclusion, IFN­Î³ exhibited antitumor immune properties by upregulating MRP and downregulating BCRP expression, reversing drug­resistance gene expression, and reducing cell viability and migration, while promoting apoptosis in PANC­1/GEM cells. IFN­Î³ could potentially serve as a treatment option for patients with GEM­resistant pancreatic cancer.


Assuntos
Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Gencitabina , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/genética , Desoxicitidina/farmacologia , Qualidade de Vida , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Proteínas de Neoplasias/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Carcinoma Ductal Pancreático/tratamento farmacológico , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/metabolismo , Apoptose , RNA Mensageiro
20.
Cancer Immunol Immunother ; 73(5): 87, 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554161

RESUMO

OBJECTIVE: To construct a prognostic model based on MR features and clinical data to evaluate the progression free survival (PFS), overall survival (OS) and objective response rate (ORR) of pancreatic cancer patients with hepatic metastases who received chemoimmunotherapy. METHODS: 105 pancreatic cancer patients with hepatic metastases who received chemoimmunotherapy were assigned to the training set (n = 52), validation set (n = 22), and testing set (n = 31). Multi-lesion volume of interest were delineated, multi-sequence radiomics features were extracted, and the radiomics models for predicting PFS, OS and ORR were constructed, respectively. Clinical variables were extracted, and the clinical models for predicting PFS, OS and ORR were constructed, respectively. The nomogram was jointly constructed by radiomics model and clinical model. RESULT: The ORR exhibits no significant correlation with either PFS or OS. The area under the curve (AUC) of nomogram for predicting 6-month PFS reached 0.847 (0.737-0.957), 0.786 (0.566-1.000) and 0.864 (0.735-0.994) in the training set, validation set and testing set, respectively. The AUC of nomogram for predicting 1-year OS reached 0.770 (0.635-0.906), 0.743 (0.479-1.000) and 0.818 (0.630-1.000), respectively. The AUC of nomogram for predicting ORR reached 0.914 (0.828-1.00), 0.938 (0.840-1.00) and 0.846 (0.689-1.00), respectively. CONCLUSION: The prognostic models based on MR imaging features and clinical data are effective in predicting the PFS, OS and ORR of chemoimmunotherapy in pancreatic cancer patients with hepatic metastasis, and can be used to evaluate the prognosis of patients.


Assuntos
Neoplasias Hepáticas , Neoplasias Pancreáticas , Humanos , Nomogramas , 60570 , Prognóstico , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/tratamento farmacológico , Estudos Retrospectivos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...